Halide-mediated behaviour of nitrate at the air-aqueous interface and implications for the liquid layer at the surface of snow and ice

Angela C. Hong, S.N. Wren, J.G. Murphy, and D.J. Donaldson

1Department of Chemistry, University of Toronto, Toronto, Canada

Introduction

- Nitrate (NO$_3^-$) is found in polar snow and ice through HNO$_3$ deposition and heterogeneous hydrolysis of HNO$_2$(g) and is source of NO$_2$ = NO$_2^+$ + NO(g) and HONO(g)\footnote{Berec, V. J. et al., J. Aerosol Sci., 30, 3777-3792.}
- The liquid-like layer (LLL) at the surface of frozen solutions is a unique reaction environment that is poorly parameterized (e.g., composition, pH, mechanisms): current thermodynamic models over predict the exclusion of NO$_3^-$ at the LLL\footnote{Wein, S. D.; Donaldson, D. J. Phys. Chem. Lett., 2011, 2, 1967-1971.} whereas the exclusion of halides (X = Cl$^-$/Br$^-$) are well described\footnote{Wein, S. D.; et al., J. Phys. Chem., 2010, 114, 1-6.}
- Enhanced production of NO$_2$(g) was observed from illuminated aqueous solutions of NO$_3^-$ and X\footnote{Wingen, L. M., et al. Phys. Chem. Chem. Phys. 2008, 10, 5688-5697.} (1,25)
- The LLL of snow and ice may exhibit properties similar to a liquid; it is important to understand what is happening at the surface of liquid solutions
- How is the distribution of NO$_3^-$ at the air-aqueous interface influenced by X$^-$?

Experimental

- Solutions of NaNO$_3$ were prepared with addition of NaX (X = Cl$^-$/Br$^-$)
- Intensity of NO$_3^-$ stretch, ν(v-NO$_3^-$), was monitored and normalized to water bend, ν(v-H$_2$O), to determine amount of NO$_3^-$ at interface (Fig. 2) and bulk
- Urban snow samples were collected and analysed by ion chromatography

Results – nitrate at the air-aqueous interface

- The relative ν(v-NO$_3^-$) are plotted for constant 0.5 M NO$_3^-$ and increasing halide concentration (0 – 2 M X$^-$) for the bulk and surface measurements; the relative nitrate response is compared to the experimental condition when 0 M X$^-$ is present in solution (Fig. 3)
- The known effect of halides on the water bend\footnote{Richards, N. K. et al., J. Phys. Chem. A, 2011, 115, 5810-5821.} is corrected for to obtain surface NO$_3^-$ amounts
- Nitrate at the surface is enhanced compared to the bulk when Br$^-$ is present, but Cl$^-$ has no effect
- Surface adsorption isotherms for nitrate with constant [X$^-$] concentration (no X$^-$ 0.5 M Br$^-$, and 0.5 M Cl$^-$) are shown in Fig. 4 by plotting the corrected surface ν(v-NO$_3^-$) against bulk NO$_3^-$ concentration
- Single-component NO$_3^-$ has neutral surface propensity but this is changed when NaX are added: NO$_3^-$ is enhanced by Br$^-$ and suppressed by Cl$^-$

Implications for snow and ice chemistry

- Halide-mediated changes in NO$_3^-$ propensity for the air-aqueous interface may impact production of NO$_x$, OH, and O(3P) (e.g., if NO$_3^-$ is enhanced at the interface by Br$^-$, it is more available for photochemistry)
- Upon freezing solutions, halides are enriched at the interface and nitrates are also somewhat enriched. Now, what happens when we freeze salty solutions with NO$_3^-$ and Br$^-$?
- Ion concentrations for Toronto snow are shown in Table 1
- Climate change will alter large-scale human activities in the Arctic regions and change the chemical composition of the polar atmosphere, sea ice, and snowpacks
- We anticipate that increasing NO$_x$ emissions will be relevant for chemistry in the Arctic environment

References

Acknowledgements

We thank Greg Wentworth and Cynthia Cheung for help with IC analysis, Heather Allen for useful discussions, and OGS for funding.